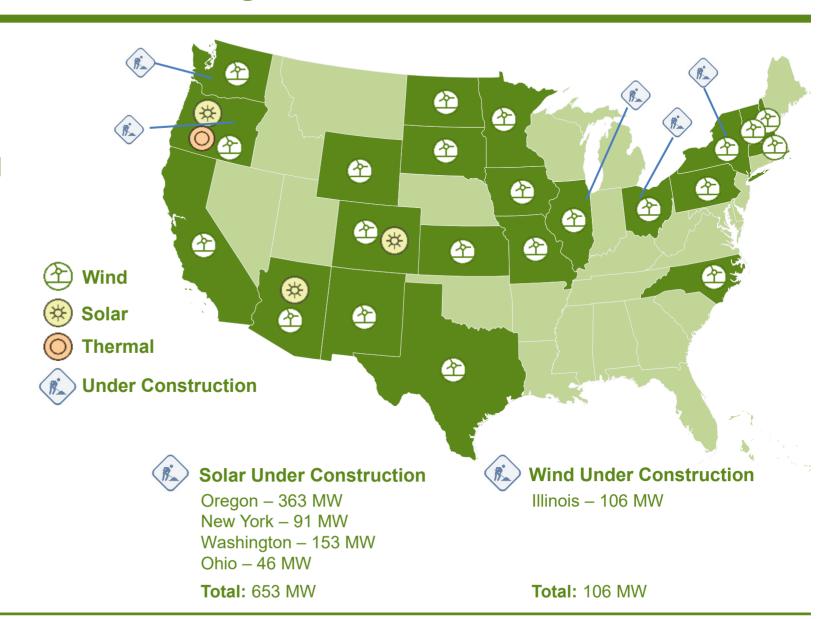


Cameron Solar (Case # PZ-PA-007-22)

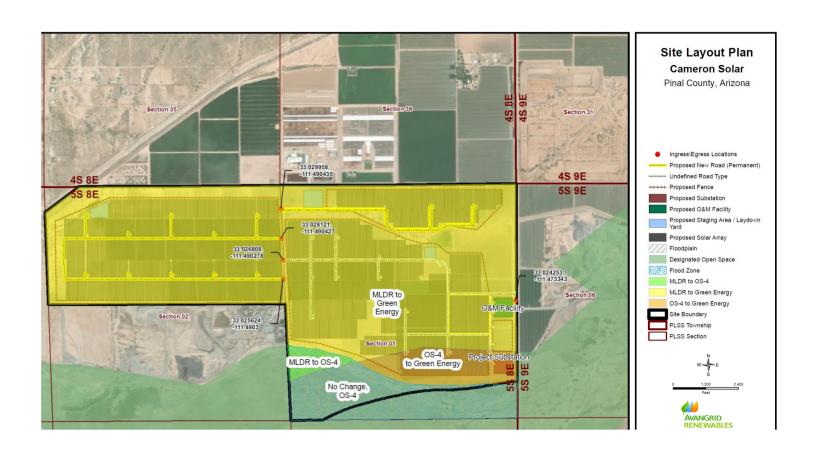
Pinal County Hearing


Meet the Team

The Cameron Solar Project Team				
Tyler Hoffbuhr	Business Developer Avangrid Renewables			
Kristen Goland	Permitting and Environment Avangrid Renewables			
Marcy Patrick	Associate Permitting Manager Avangrid Renewables			
David Glenn	Transmission and Interconnection Avangrid Renewables			
Mark Stacy	Director, Business Development Avangrid Renewables			

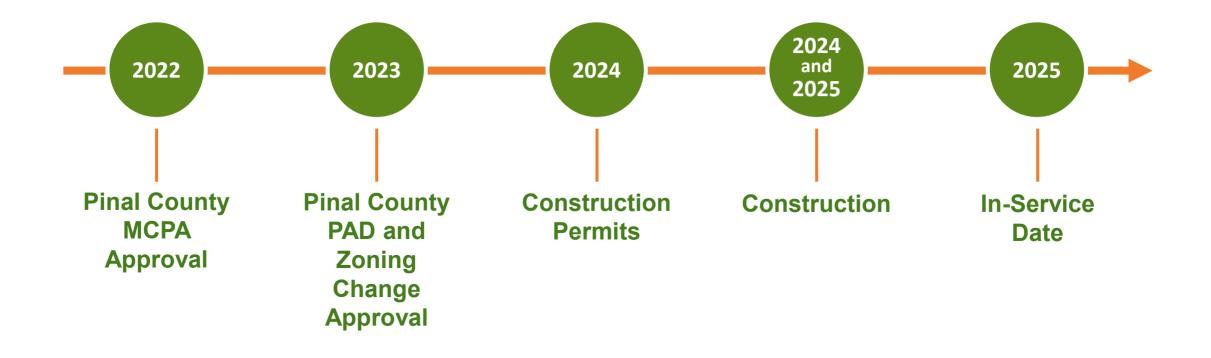
About Avangrid Renewables and Avangrid, Inc.

- One of the largest wind operators in the U.S. with ~8 GW of owned and controlled wind and solar generation across 22 states.
- Stable owner/operator with commitment to the communities where we operate.
- AVANGRID, INC. (NYSE: AGR) is a diversified energy and utility company with \$38 billion in assets and operations in 24 states.



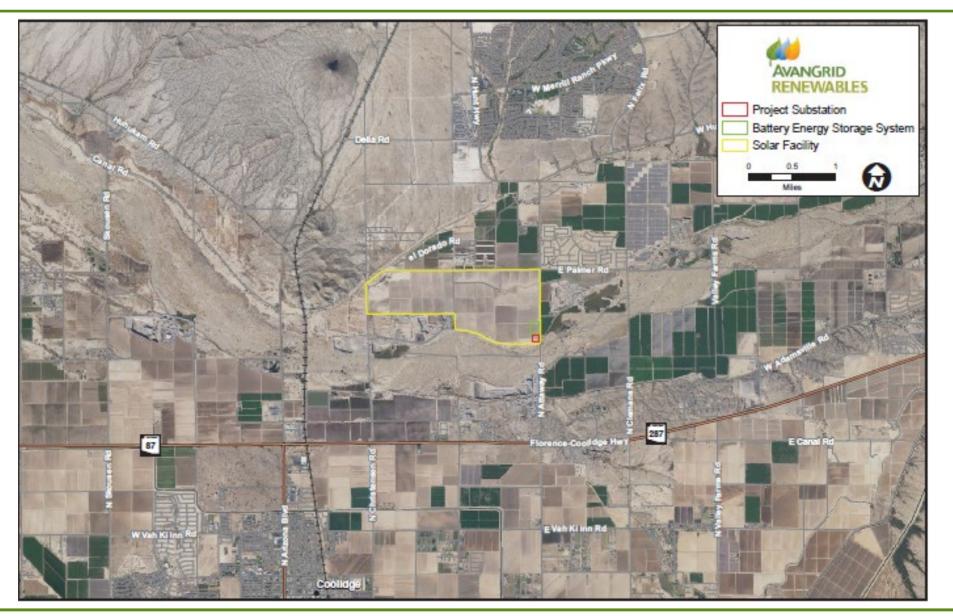
Project Major Comprehensive Plan Amendment Details

- Proposal: Aurora Solar LLC (a subsidiary of Avangrid Renewables LLC) proposes to re-designate ~885 acres from Moderate Low Density Residential and Recreation/ Conservation to Green **Energy Production and** Recreation/Conservation
- Owner: The Church of Jesus Christ of Latter-day Saints
- Applicant: Kristen Goland, Aurora Solar LLC


Cameron Solar Project Overview

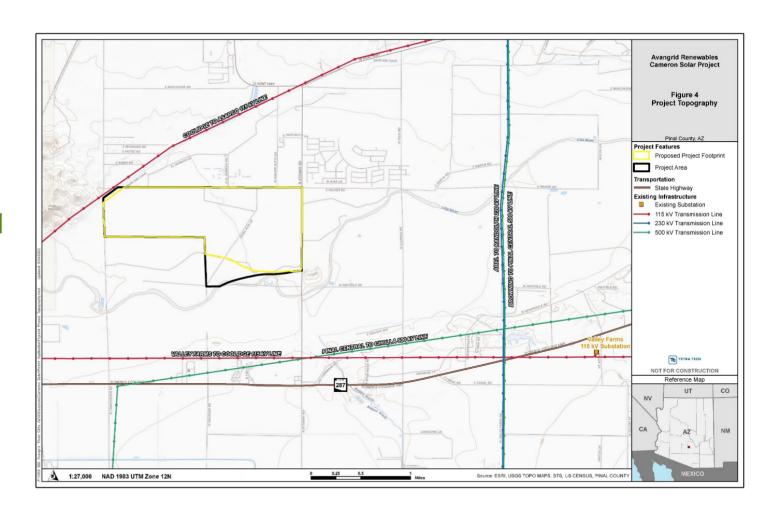
- Planned 100-megawatt (MW) solar power generation facility.
- Optional 100-MW battery energy storage system (BESS).
- Multiple interconnection strategies that include Salt River Project, Arizona Public Service, or Western Area Power Administration.
- Additional facilities including access roads, an operations and maintenance building, and a collector substation.

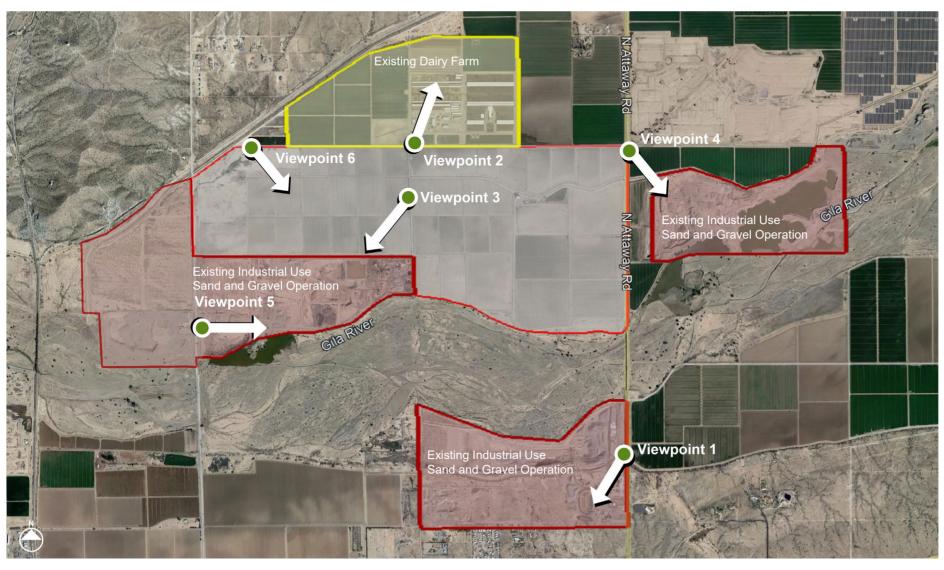
Anticipated Milestone Schedule


Project Public Involvement

Neighborhood Meeting held May 2, 2022, 5:00-6:30 p.m.

- 13 individuals attended.
- No concerns, issues, or problems were identified.
- All attendees inquired about additional information on different subject matters; attendees did not express any concerns, issues, or problems that the Project may have on these subject matters.


Project Location



Project Location Advantages

- Existing infrastructure (major roadways, transmission, etc.) is located near the Project.
- Large, generally flat area.
- Avoids impacts to special flood hazard areas.
- Surrounded by intensive industrial land uses.
- Minimal environmental resource impacts.

Viewpoint Keyplan

Image source: Google Earth

Viewpoint 1: CEMEX from Attaway Road

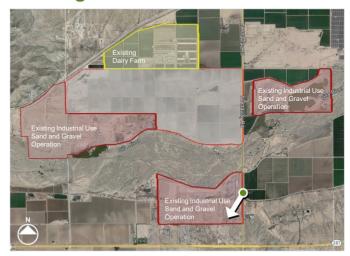
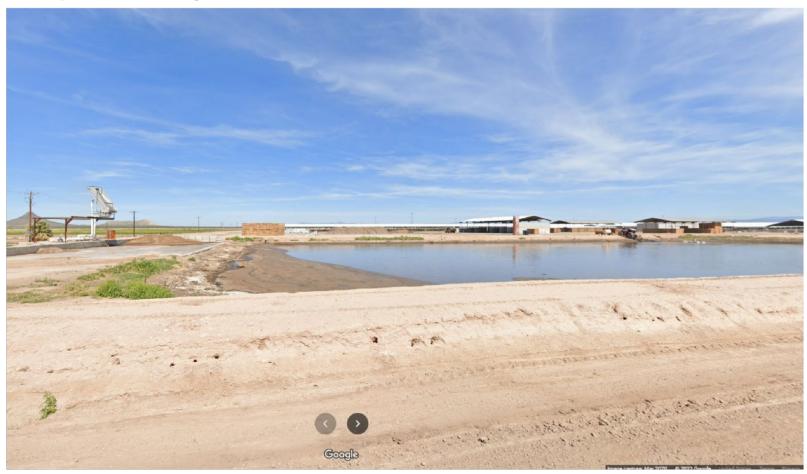



Image source: Google Earth

Viewpoint 2: Dairy from Palmer Road

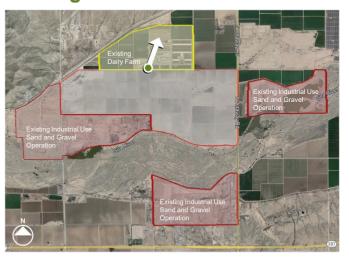
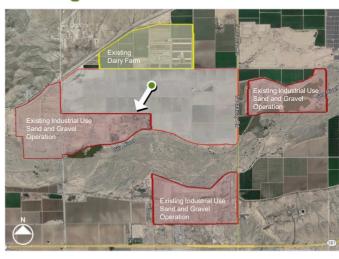



Image source: Google Earth

Viewpoint 3: South of Viewpoint 2 looking Southwest

Viewpoint 4: Sand and Gravel from Attaway Road

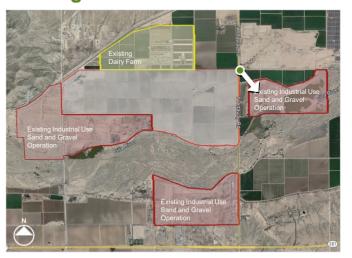
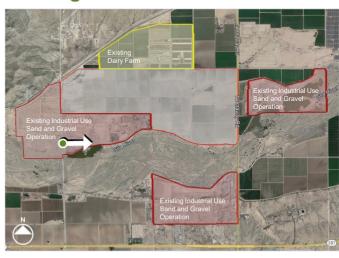
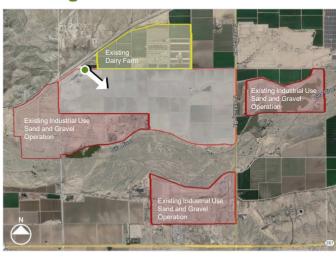



Image source: Google Earth


Viewpoint 5: West side looking East

Viewpoint 6: Northwest corner looking Southeast

Why do we like the project?

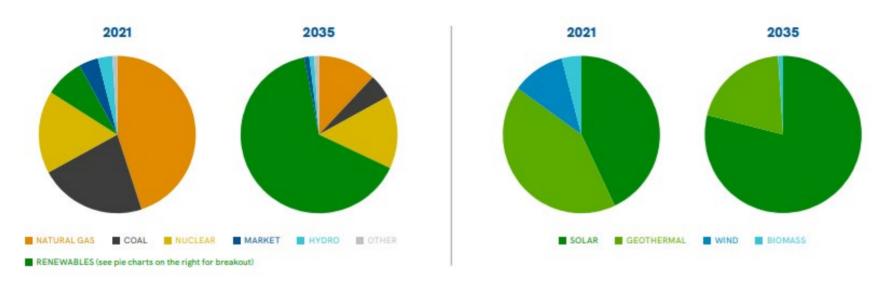
- Arizona Public Service (APS) has committed to providing 65% clean energy by 2030 - the Cameron Solar Project will help APS meet this commitment.
- Existing utility infrastructure makes the Project site compatible for renewable energy development.
- Proximity to load centers (Phoenix)
- Project site is absent of sensitive resources and is currently used as majority agricultural lands (previously disturbed land).

APS Clean Energy Commitment

APS Clean **Energy Commitment**

- 100% clean, carbon-free electricity by 2050
- 65% clean energy by 2030 with 45% renewable energy
- Eliminate coal by the end of 2031

"APS plans to build an additional 500 megawatts of solar and stand-alone battery storage by 2025."


Source: Arizona Public Service. 2022. Clean Energy Commitment. Available online at: https://www.aps.com/-/media/APS/APSCOM-PDFs/About/Our-Company/Energy-Resources/CleanEnergyCommittment.ashx?la=en&hash=EC0606653A170A6A83A716703CD62B44

SRP Clean Energy Commitment

SRP'S EVOLVING ENERGY MIX

PROJECTED RETAIL TOTAL RESOURCE MIX IN GWH

"..by 2025, SRP plans to add 2,205 megawatts of solar energy to our grid,..."

Source: Salt River Project. 2021 Sustainability Report. Available online at: https://www.srpnet.com/assets/srpnet/pdf/grid-water-management/sustainability-environment/Sustainability-Report.pdf.

Why solar vs. planned residential?

- No additional ancillary services required for solar
- Minimal lighting dark sky compliant
- Minimal water usage (<1 acre foot per year)
 - A planned residential community of similar size would use >100 acre fee of water per year
- Minimal operational traffic
- More pervious surface for groundwater infiltration
- Quieter for existing residences off N. Christensen Rd.

Project Property Tax Estimate Allocation

Property Tax Allocation	Percent of Tax	Estimated Taxes (Average per Year)		Estimated Taxes (30 Years- Project Life)	
Florence USD #001	41.1	\$	220,304.60	\$	6,609,137.91
Pinal County	29.1	\$	155,721.12	\$	4,671,633.59
Pinal County Jr. College	16.8	\$	90,018.87	\$	2,700,566.13
Magma Flood	8.8	\$	47,170.51	\$	1,415,115.29
Pinal County Flood	1.4	\$	7,404.13	\$	222,123.79
Central AZ Water Conservation	1.1	\$	6,125.28	\$	183,758.25
Pinal County Library	0.8	\$	4,224.55	\$	126,736.60
Fire District Assistance Tax	0.5	\$	2,425.59	\$	72,767.77
Central Arizona Valley Inst Tech (CAVIT)	0.4	\$	2,187.56	\$	65,626.67
TOTAL	100	\$	535,582.20	\$	16,067,466.00

Thank you for your time!

If you have questions, comments, or concerns, we want to hear from you:

- Call: (480) 535-6001
- Email: cameronsolar@avangrid.com

Supplemental Information- to be used as needed

Why solar vs. planned residential?

 441-home residential community – Total annual usage: 123 acre feet

Assumptions: 1 acre foot per 3.5 homes^{1/}.

The 883-acre site would accommodate roughly 441 homes.

- 1 home = 91,238 gallons or 0.28 acre feet
- 441 homes = 40,235,958 gallons or 123 acre feet
- 100-MW solar facility Total annual usage: 0.83 acre feet
 - O&M 13,250 gallons per year (0.04 acre feet)
 - Panel washing (259,259 panels twice per year at 0.5 gallons per panel, per wash) = 259,259 gallons (0.79 acre feet)

1/ Arizona Department of Water Resources. 2022. How Many Homes in Arizona, on Average, Share an Acre-Foot of Water Each Year? Accessed online at: http://water.az.gov.

Property Values

- A recent 2020 study evaluated 208 solar facilities, 71,373 housing sales occurring within one-mile of solar facilities (Test Group) and 343,921 sales between one-to-three miles of a solar facility (Control Group) in Massachusetts and Rhode Island. The study further isolated rural and non-rural communities.
 - The study provides data which found no negative impact to residential home values near solar arrays in rural areas:
 - "These results suggest that [the impacts on home sales in the Test Area] in rural areas is effectively zero (a statistically insignificant 0.1%), and that the negative externalities of solar arrays are only occurring in non-rural areas"
 - Further, the study tested to determine if the size of the solar installation impacted nearby property values, and found no evidence of differential property values impacts by the solar installation's size.
- Another 2020 study examining 451 solar facilities in North Carolina found:
 - "Across many samples and specifications, we find no direct negative or positive spillover effect of a solar farm construction on nearby agricultural land values. Although there are no direct effects of solar farms on nearby agricultural land values, we do find evidence that suggests construction of a solar farm may create a small, positive, option-value for landowners that is capitalized into land prices. Specifically, after construction of a nearby solar farm, we find that agricultural land that is also located near transmission infrastructure may increase modestly in value."

Sources:

Gaur, V. and C. Lang. 2020. Property Value Impacts of Commercial-Scale Solar Energy in Massachusetts and Rhode Island. Submitted to University of Rhode Island Cooperative Extension on September 29, 2020. Accessed at https://web.uri.edu/coopext/valuing-sitingoptions-for-commercial-scale-solar-energy-in-rhode-island/.

Abashidze. 2020. Utility Scale Solar Farms and Agricultural Land Values. Georgia Institute of Technology.

